
Black Hole Effect: Detection and Mitigation of Application Failures due to
Incompatible Execution Environment in Computational Grids

Aditya Nishandar, David Levine, Sankalp Jain
Department of Computer Science and

Engineering
The University of Texas at Arlington

Arlington, TX 76010, USA
{ nishanda, levine, sjain }@cse.uta.edu

Gabriele Garzoglio, Igor Terekhov
Computing Division

Fermi National Accelerator Laboratory
Batavia, IL 60510, USA

{ garzoglio, terekhov }@fnal.gov

Abstract
Scientific and Engineering domain Applications like high
energy physics applications have huge computational and
storage needs. Such applications rely mainly on
geographically dispersed productions farms for their
computing needs. Production farms typically consist of
commercial off-the-shelf (COTS) clusters, Network of
Workstations (NOW) and intranets. In a grid
environment, these clusters are interfaced to the grid
middleware via cluster management software like a batch
system. In this paper we focus on a detrimental effect that
one or more faulty nodes in a cluster have on the
efficiency and throughput of the cluster and the
application in general. This effect is what we call as the
‘Black hole effect’. A ‘Black Hole’ is a faulty node in the
cluster that causes the application to fail on it due to
incompatibilities between application requirements and
the execution environment.

1. Introduction

 A computational grid has been defined as a hardware
and software infrastructure that provides dependable,
consistent, pervasive and inexpensive access to high end
computational capabilities [7]. Large scale distributed
systems like grids have great potential for incurring
faults; this has been one of the main hindering factors in
the deployment of applications on computational grids
[12]. The issues of fault tolerance and reliability in
distributed systems have been a significant area of
research for many years, because of the high failure rates
intrinsic to such systems and a variety of solutions have
been proposed to detect and respond to faults and failures
in a distributed system in general. The grid fabric consists
of a multitude of hardware and software components that
are prone to failures. The Grid Fabric layer provides the
resources to which shared access is mediated by Grid
protocols: for example, computational resources, storage
systems, catalogs, network resources, and sensors [8].

Clusters are part of the grid fabric for grids hosting high
energy physics applications. Compute nodes of the
clusters as well as the interconnecting network are prone
to failures. Such component failures can lead to
unanticipated, potentially disruptive failure behavior and
to service unavailability. Monitoring systems like
Supermon [11] and GEMS [12] assist the system
administrators in determining failures within a cluster, but
the existing grid job management systems cannot recover
or mask such failures. Application level failures are
presently detected at the best by manual intervention or
by the grid job management layer by checking the exit
status of the execution returned by the batch system or by
modifying the application to deal with failures, which can
be a non-trivial task for legacy applications like high
energy physics.
 Our focus in this paper is determining and reacting to
failure caused by the mismatch between the application
requirements and the execution host. In particular we deal
with failures that occur when the execution host fails to
provide a required service or a set of services to the
application, resulting in the application crashing.
Solutions such as checkpointing, replication and message
logging are complimentary to the solution proposed in
this paper.
 Four broad types of failure classes are defined by [3].
Omission failures occur when a process does not respond
to an event. Timing failures occur when a process does
not respond before a timeout has expired, or responds
prematurely. Crash failures are unrecoverable states when
a process completely stops executing. Byzantine [6], or
arbitrary failures, is the class of failures that are unable to
be accounted for in the design of a system. Fault detection
is a prerequisite for recovering from faults. Applications
executing in a distributed environment rely on various
tools and services provided by the execution
environment. Resource allocation and management
systems like Condor [10], manage resource allocation by

Reduction in efficiency due to the black hole effect
for a 35 node Condor cluster.

10
0

64
.7
6

46
.6
6

35
.8
9

30

23
.8

21
.7
6

19
.5
8

18
.0
9

16
.6
4

16
.1
9

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20

Number of Faulty Nodes (Black Holes)

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

Successful job execution time = 300 s
Time to failure = 30 s

Figure 1. Reduction in grid job efficiency due to faulty nodes

specialized description languages that perform the dual
task of describing the available resources at the provider
sites and the resources requested by the application.
Applications typically rely on a set of basic services
offered by the execution environment like compression
utilities and system libraries, and usually do not explicitly
specify these in the job description to the resource
management system. Compute nodes in Beowulf clusters
or COTS clusters are heterogeneous in terms of the
underlying architecture or the software environment and
utilities. Nodes in a cluster typically do not have the exact
same set of libraries or utilities. Version conflicts may
result in the application failing on a particular compute
node, which can potentially have a cascading effect. The
entire batch jobs of the same application queued in gets
scheduled to the compute node failing the application,
resulting in low throughput and efficiency. This
phenomenon is what we describe in this paper is called
the ‘Black Hole Effect’. The term application is used to
denote a collection of batch jobs that are queued in the
batch system. All the queued jobs are similar in terms of
their computational complexities, running time and the
execution code. Computational grids provide access to
high end computational resources like Beowulf clusters

and High Performance Computing Clusters (HPCC),
typically to a geographically distributed, diverse user
base. HPCC provide a single system image. The
application can be executed on any of the servers within
the cluster. HPCC typically do not exhibit the black hole
effect because of the single system image, they have all or
none semantics, i.e. the application can execute with
success on all the nodes (servers) or it cannot execute at
all. Beowulf clusters are scalable performance clusters
based on commodity hardware, on a private system
network, with open source software infrastructure.
Cluster architectures in which the compute elements are
heterogeneous in terms of hardware and software are
prone to the black hole effect. In a grid environment, the
computational and storage resources are typically in
different administrative domains and geographically
dispersed. An application wanting to make use of the grid
resources has to yield to the local policies of the resource
provider and the heterogeneity of resources. The grid
software must shield the application from the detrimental
effects of the underlying fabric. In the rest of the paper
we describe the problem of detecting Black holes in more
detail and propose three different classes of approaches of
mitigating its effect on the efficiency of the applications.

We frequently cite the problem and its resolution in the
context of the SAM-Grid [1] [9] infrastructure, a
distributed system for job, data and information handling
for high energy physics applications. Section 2 elaborates
on the concept of Black holes and their how the efficiency
of an application exacerbates in a grid environment by
taking Monte Carlo simulations on the grid for high
energy physics (HEP) as an example application. Section
3 describes observed scenarios of how black holes come
into existence and their detection. Section 4 outlines
different approaches to deal with the effect. We conclude
with section 5 and provide future direction for research in
section 6.

2. What are black holes?

 Monte Carlo methods are widely used in scientific
computing and simulations. Applications using Monte
Carlo methods, like High Energy Physics (HEP)
applications account for a major percentage of the
applications running on widely deployed grid
infrastructures like SAM-Grid. Monte Carlo applications
are usually compute intensive operating on data sets of
varying magnitude in terms of size. Parallelism is a way
to accelerate the convergence of a Monte Carlo
computation. If N processors execute N independent
copies of a Monte Carlo computation, the accumulated
result will have variance N times smaller than a single
copy. Grid jobs in production grids like SAM-Grid
manifest themselves into multiple local jobs at an
execution site. A grid job is a description of the user
requirements for the application (Monte Carlo
simulation). For example for a typical DØ [2] Monte
Carlo simulation grid job, the user specifies the number
of physics events to be simulated and the control
parameters for the simulation. A single grid job is
mapped to multiple local jobs after the resource allocation
is done by the job management system. Local jobs
operate on a smaller chunk of the grid job. When the grid
job is instantiated at the execution site it usually
outnumbers the compute elements (nodes), resulting in
local jobs getting queued in the batch system. Most of the
execution sites have a mix of dedicated and non-
dedicated computational resources, managed by a
network batch queuing system like Condor and PBS. The
batch system schedules these local jobs on compute
resources as they become available. The application relies
on some basic services provided by the compute nodes, if
any of these required services malfunction; the
application fails and exists the compute node with an
error status. The batch system is unaware of the cause of
the failure and schedules another job of the same
application to the same compute node which is bound to
fail. The batch system continues to schedule jobs on the
same compute node causing spurious high turnaround,
and eventually yielding very low throughput for the grid

job. This effect is called the Black Hole effect, and the
compute nodes which malfunction with respect to the
application are called Black holes.

3. Black hole detection.

 Figure 1 represents the decrease in efficiency of a grid
job. The tests were carried on a cluster having 35
compute nodes, running Red Hat Linux 7.2 and managed
by Condor batch system. A total of 210 jobs were
submitted for each configuration of black holes. The
batch system had no other jobs except the jobs submitted
for the test. In the rest of this section we provide a more
insight into the detection of Black holes.

When jobs exhibit high turnaround on a particular node,
how should the grid software determine if the jobs are
really failing on that node, or the node is just a
combination of powerful processing element, large
memory?

Black hole detection is aided by the application
specifying a minimum duration for the job to execute
(dmin). From empirical data dmin can be estimated within an
error margin. dmin is expressed in terms of wall clock time
for a given architecture and a given operating system. For
example to simulate 250 physics events of a DØ Monte
Carlo simulation job, it takes at a minimum 8 hours (dmin)
between the time it is scheduled by the batch system and
the time that the error and output logs are returned. The
reference architecture is an Intel x 86 with 512 mega
bytes of physical memory, 1024 mega bytes of virtual
memory, 1GHz of clock speed, running a Linux 2.4.x
kernel.
 In determining if a node is really a black hole, we
normalize the values of the compute nodes processing
power (processor) and its memory with respect to the
reference system, thus arriving at a normalized value of
dmin. Empirical evidence suggests that if the amount of
time taken by an execute node to complete a job is less
than 60% to 80% of the dmin value, (leeway of 20% to
compensate for mathematical approximations), then we
have a potential black hole.

How does the grid software react, if we have mixture of
local jobs having a relatively high variation in their
execution time?

The Black Hole effect is an application specific effect. A
node which is designated as a black hole for one
application might be a perfectly fine node for some other
application if that application does not rely on the same
services for its execution. For example if a Bio
informatics application does not use a particular system
library or is able to handle inconsistencies in the version
of a system library, then that application can execute fine
on a black hole for a high energy physics application.

Which layer of software detects the presence of Black
holes?

The job management software on the execution site like
the Globus jobmanager can detect these faulty nodes,
since a jobmanager is started for each grid submission.
We propose the detection of Black holes as a part of the
grid-fabric interface [4]. In SAM-Grid, the grid-fabric
interface is a collection of services on the execution site
gateway. The gateway interfaces the grid middleware to
the batch system, by dynamically instantiating the job
management service. The job management at the
execution site is assisted by these services. These services
try to mask the failures and the shortcomings of the
fabric.

What fabric services are necessary in order to detect
black hole?

Some basic services are expected of the fabric to detect
the existence of a black hole. These services are
incorporated in many popular batch queuing systems.
Service like retrieval of the standard output and standard
error streams of the finished jobs. API’s for explicitly
specifying the compute node on which a job should
execute.
 We now provide with some observed scenarios. These
scenarios are based on practical experiences and by no
means are complete or exhaustive, but stem from our
experience of executing physics applications on
production grids
• Grid software which depends on authentication
mechanisms via X509 certificates exhibit failures due to
clock skews, especially if the clock is slow. The X509
proxy credentials will not be valid if the system clock is
slow, thus resulting is failure of accessing grid services
relying on X509 authentication mechanism from the
compute node in the cluster. If the application scheduled
on a compute node with a slow clock utilizes the X509
proxies for accessing grid services, then the application
will fail on that particular compute node.
• Inappropriate software. If a job expects some basic
tools, usually provided by the operating system such as
compression utilities et cetera, and these basic services
are not present or behave inconsistently, it results in the
application failing. For example applications which
depend on GNU-zip are susceptible to the black hole
effect if the compression utility malfunctions or has the
incorrect version.
• hostname utility, or in general gethostbyname() does
not return the fully qualified domain name, this might
result in the failure of network services which might work
locally, but fail in a grid environment.
• Conflict with system libraries. Applications relying on
system libraries for their execution could fail if these

libraries are not compatible with the application. This is
especially observed with the glibc library in flavors of
Linux for dynamically linked code.

4. Reacting to the black hole effect

We have described some potential scenarios of how black
holes might come into existence. We now present a
couple of approaches to recover and whenever possible
avoid the black hole effect.

4.1. Proactive probing for black holes

 The proactive approach of determining whether a
compute node can be a potential black hole relies on the
application describing in a formal way as to what services
it expects from a compute node in the batch system. This
approach is a pessimistic approach in the sense that it
assumes that there will be potential black holes in a
cluster and tries to avoid them by isolating these nodes
for the application. These services can be specified via a
service description language. The grid software then has
the responsibility of sending small probes (test jobs) to all
the nodes in the batch system and analyzes the results of
these probes. Persistent information regarding the total
number of reachable nodes, nodes suitable for executing
the application based on the criteria (good nodes) and
nodes unsuitable for executing the application (potential
black holes) is maintained.
Pros:
• A correct formal description of services required from
the compute node is the only requirement of this
approach.
• Can easily be accommodated into an existing Grid
infrastructure, with out changing a significant amount of
application code.
Cons:
• Is highly dependent on the correct formal specification
of the services required from the compute nodes.
• The persistent information regarding the state of the
cluster is not very dynamic and might result in wasted
resources.
• Relies on the fact that there is some non trivial way to
get a list of all available compute nodes.
• Populating the persistent storage might be a very time
consuming task and the information collected might be
outdated and resource wastage might occur. For example
in a Condor pool of computing resources, the state of the
Condor pool is constantly changing. New nodes become
available and existing jobs might be checkpointed and/or
preempted during their run, thus making the whole
environment highly dynamic.

4.2. Reactive approach - Mining the logs

 The reactive approach for dealing with the black hole
effect is an optimistic approach. We start by assuming
that all the compute nodes in the cluster comply with the
applications service requirements. This approach is at the
best probabilistic and depends greatly on the availability
of statistical data regarding the behavior of the
application. For example the grid software needs to know
what is an approximate time that the application takes for
an Intel x 86 machines with 512 mega bytes of physical
memory, 1024 mega bytes of virtual memory and the
processor clock speed of 1 GHz. The values can then be
normalized depending on the similar parameters of a
compute node. When a grid job is instantiated (manifests
itself into multiple local batch jobs), we let the grid
software submit multiple jobs to compute nodes in the
batch system from a list of available nodes. Each node in
the list is initially assigned a weight of 0 units. A sorted
list of nodes is maintained with the nodes having higher
weights at the head of the list. If a job successfully
executes on a node its weight increases exponentially. If a
job fails to execute on the node, then its weight reduces
exponentially. This ensures that the most of the jobs are
scheduled on good nodes at the same time avoiding the
starvation of nodes. The jobs are scheduled by the batch
system in from the head of the list, thus increasing its
chances of success.
Pros:
• Very dynamic in nature. Gives high priority to the
latest results.
• Needs no formal specification of what services the
compute node should provide.
Cons:
• Determining the cause of is difficult, and mining of log
files is necessary.
• Depends on the fact that batch system provides a
service of submitting jobs to selective nodes. Also if a list
of nodes is given, the scheduling of jobs on these nodes
might be biased.
• Need complex statuses or messages to determine if the
failure was due to the application failing (property of the
application) or one of the services required by the
application failing (property of the node).
• Complex data structure required to maintain
information, overhead might not be trivial.
• Collection of statistical information might be an
overhead.
• Normalization needs to be done depending on the
characteristics of the compute node and the characteristics
specified by the application, which might not be trivial.
• Since this approach allows failures and learns from
them, the efficiency of the grid infrastructure is hampered
to a non negligible extent.
 If a node executes a job successfully, then its weight
increases rapidly during the initial few successes and
comparatively slowly for the later successes, thus
following a logarithmic trend.

 If a node having positive weight fails to execute a job,
we reduce its weight linearly until it reaches the initial
weight of 0 units. After this point the weight reduced
exponential. Thus if a node is a potential black hole, the
first job scheduled to it will fail and it will immediately
receive negative weight. On the other hand if a node with
positive weight fails a job, we classify this kind failure as
Byzantine failure [3] . The higher the weight associated
with a node, the higher is the probability that jobs will
execute successfully on that node if scheduled at some
later point in time.

4.3. Hybrid approach - Probing with Mining

 The Hybrid approach tries to incorporate the
advantages of both the previous approaches. A periodic
probing of the nodes combined as in the proactive
approach combined with the dynamicity of the reactive
approach would be ideal. A list of good nodes can be
built by probing and this information is periodically
refreshed depending on the outcome of the local jobs as
in the reactive approach. The hybrid approach offers the
best of both worlds, but the complexity of implementation
might be the only hindering factor in its deployment.

4.4. Black holes and system throughput

 Throughput is output relative to input; the amount
passing through a system from input to output.
Tfail = Time taken by an application to fail on a compute
node.
Tsuccess = Time taken by an application to complete
successfully.
Failure rate = Number of failed jobs per unit time.
Throughput = (Successful jobs / Total number of jobs).
 A batch system with 35 execute node is submitted 210
jobs. Tsuccess is 100s and Tfail is 2s. If we have 2 black holes,
1 job fails per second (Failure rate = 1 jobs per second).
Success rate is 33 jobs per 100s, i.e. 0.33 jobs per second.
At the end of 100s the throughput of the system is 24.81.
The existence of black holes increases the input to the
system with out producing any useful output, thus
adversely affecting the systems throughput. The greater
the time to fail for a job on a node, the greater is the
throughput of the system.
 Throughput is inversely proportional to the number of
black holes and Tfail.

5. Related work

 Fault detection and response has been a highly
researched topic for the past decade or so. [12] Propose a
fault detection service for wide area distributed
computing environments, like computational grids. This
service uses well-known techniques based on unreliable

fault detectors to detect and report component failure,
also known as fail-stop failures, while allowing the user
to trade of timeliness of reporting against false positive
rates. Many batch queuing systems like Condor support
checkpointing and migration, message logging to deal
with application failures. These mechanisms would
improve the efficiency when recovering from failures due
to Black Holes.

6. Conclusions and Future Work

 We have described the problem of applications failures
due to incompatible execution environments. We also
demonstrate how these failures exacerbate in
computational grids as compared to isolated clusters.
Different approaches have been proposed to detect and
mitigate such failures. In the SAM-Grid system we have
been successful in dealing with the Black hole effect by
providing fault tolerance in the grid-fabric interface [5].
Majority of the reasons why applications fail on the
worker nodes is because of the heterogeneity of the
cluster and lack of formal specification as to what
services the application expects from compute resources.
Such formal specification is not always possible due to
the fabric limitations and hence the need for shielding
grid applications from faults.

7. Acknowledgements

 This work was partially supported by the Department
of Computer Science and Engineering, Department of
Physics at The University of Texas Arlington, TX, USA;
and Fermi National Accelerator Laboratory, Batavia, IL,
USA, FNAL-PO-546763 and conducted with the United
States Department of Energy SciDAC program, the
Particle Physics Data Grid (PPDG), and the Grid for UK
Particle Physics (GridPP).

8. References

[1] A. Baranovski, G. Garzoglio, K. Koutaniemi, L. Lueking,
S. Patil, R. Pordes, A. Rana, I. Terekhov, S. Veseli, J. Yu, R.
Walker, V. White, �The SAM-GRID project: architecture and
plan�, Nuclear Instruments and Methods in Physics Research,
Section A (Elsevier Science), Proceedings of ACAT�2002.

[2] DØ experiment: http://www-d0.fnal.gov

[3] F. Christian, �Understanding Fault-Tolerant Distributed
Systems,� in Communications of the ACM, 34(2):56-78, 1991.

[4] G. Garzoglio, I. Terekhov, A. Baranovski, S. Veseli, L.
Lueking, P. Mhashilkar, V. Murthi, �The SAM-Grid Fabric
services�, talk at the IX International Workshop on Advanced
Computing and Analysis Techniques in Physics Research
(ACAT-03), Tsukuba, Japan, Dec 2003.

[5] G. Garzoglio, I. Terekhov, J. Snow, A. Nishandar, S. Jain,
�Experience producing simulated events for the DZero
experiment on the SAM-Grid�, presented at Computing in High
Energy and Nuclear Physics (CHEP 2004), Interlaken,
Switzerland, Sep 2004.

[6] H. Attiya and J. Welch, �Distributed Computing
Fundamentals, Simulations, and Advanced Topics�, John Wiley
and Sons Inc, ISBN 0-471-45324-2.

[7] I. Foster and C. Kesselman (eds.), �The Grid: Blueprint for
a new Computing Infrastructure�, (Morgan Kaufmann
Publishers, 1998) ISBN 1-55860-475-8.

[8] I. Foster, C. Kesselman, and S. Tuecke, �The Anatomy of
the grid. Enabling scalable virtual organizations�, International
Journal of Supercomputer Applications, 2001.

[9] I. Terekhov, A. Baranovski, G. Garzoglio, A. Kreymer, L.
Lueking, S. Stonjek, F. Wuerthwein, A. Roy, T. Tannenbaum,
P. Mhashilkar, V. Murthi, R. Walker, F. Ratnikov, T. Rockwell,
�Grid Job and Information Management for the FNAL Run II
Experiments�, in Proceedings of Computing in High Energy and
Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, La
Jolla, California, March 2003.

[10] M. Litzkow, M. Livny, and M. Mutka, �Condor - A Hunter
of Idle Workstations�, Proceedings of the 8th International
Conference of Distributed Computing Systems, pages 104-111,
June, 1988.

[11] M. Sottile and R. Minnich, �Supermon: A High-Speed
Cluster Monitoring System�, in Proceedings of IEEE
International Conference on Cluster Computing, 2002.

[12] P. Stelling, et.al., �A Fault Detection Service for Wide
Area Distributed Computations�, Proceedings of the Seventh
IEEE International Symposium on High Performance
Distributed Computing, 1998.

[13] R. Subramaniyan, P. Raman, A. D. George, and Matthew
Radlinski, �GEMS: Gossip-Enabled Monitoring Service for
Scalable Heterogeneous Distributed Systems�, submitted to the
journal of Network and Systems management.

